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Abstract

We describe a branch and bound algorithm for solving the axial three-

index assignment problem. The main features of the algorithm include a

Lagrangian relaxation incorporating a class of facet inequalities and solved

by a modified subgradient procedure to find good lower bounds, a primal

heuristic based on the principle of minimizing maximum regret plus a variable

depth interchange phase for finding good upper bounds, and a novel branching

strategy that exploits problem structure to fix several variables at each node

and reduce the size of the total enumeration tree. Computational experience

is reported on problems with up to 78 equations and 16,376 variables. The

primal heuristics were tested on problems with up to 210 equations and 343,000

variables.
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1. INTRODUCTION

In this paper we present an algorithm for the axial three-index

assignment problem (AP3). AP3 can be stated as a 0-1 programming problem as

follows:

Min jcJ kK ijkxijk

subject to

I I X.j V i e I

jcJ kEK jk

[ z Xijk 1 I j e J

icI keK

I Ijxij k  1 Vk e K
i¢ jk

Xijk ( (0,11 V(i,j,k} I x J x K

where I, J and K are disjoint sets with III = IJI IKI = n. We will

sometimes use the notation S : I x J x K, and write seS for

(i,j,k} c I x J x K.

AP3 is a close relative of the (axial) 3-dimensional transportation problem

(TR3), in which the right-hand sides of the constraints can be any positive

integers, the sets I, J, K are not necessarily equal in size, and the

integrality constraints are relaxed. This is in turn a generalization of the

well-known transportation problem, a special case of which is the simple

assignment problem. This and other formulations of TR3 were first studied by

Schell [151. For references concerning these problems see [3].

Applications of AP3 mentioned in the literature include the following

(Pierskalla [14,131):

In a rmlling mill, schedule inaots thrcugh soaking pits (temperature

stabilizing baths) so as to minimize idle-time for the rolling mill (the

next stage in the process).
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" Find a minimum cost schedule of a set of capital investments (e.g.,

warehouses or plants) in different locations at different times.

" Assign military troops to locations over time to maximize a measure of

capability.

• Launch a number of satellites in different directions at different altitudes

to optimize coverage or minimize cost.

In [3], AP3 is shown to be equivalent to the problem of finding a minimum-

weight exact clique cover in a complete tripartite graph.

AP3 is known to be NP-complete [8]. Obviously, AP3 is a special case of

the set partitioning problem (SPF):

Max (cx: Ax = e, x e (O,I} q }  (1)

where A is a matrix of zeros and ones and e is a vector of ones. For

properties of (SPP) see the survey [2].

Among the early algorithms and heuristics for this problem are those of

Pierskalla (14,13] and Leue [11] (the latter is related to the Hungarian

algorithm for the (two-index) assignment problem, and to an algorithm by Vlach

[17] for the planar three-index assignment problem). A primal-dual algorithm

is described by Hansen and Kaufman in 191. The exact algorithms described in

the literature share a branching strategy based on fixing single variables to

zero or one. These algorithms Jo iot use any results from polyhedral

combinatorics; in fact there have -e"- -o Dolyhedral studies of this problem

in the literature before [31. Fur:-er'ore, aside from [14], no study of

heuristics for this problem has been .rdertaken. The study presented here

differs from the earlier papers in al" of these respects.

The main feaLures of the algoric-i oescrioeo are:

* Instead of the LP-relaxation, bounds are computed using a Lagrangian

relaxation which incorporates facets of the AP3 polytope. This relaxation

is solved by a modified subgradient optimization procedure.
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e New, efficient primal heuristics are used to obtain successively improved

approximate solutions.

e A new branching rule is applied which produces smaller searph trees.

Instead of completely specified primal solutions, the terminal nodes are

two-dimensional assignment problems.

The first two features are modeled after the set covering algorithm of Balas

and Ho [1].

In Section 2 we describe the overall flow of control in the algorithm. A

study of primal heuristics is presented in Section 3. The maximum-regret

heuristic is shown to produce better solutions than several others, and a

variable-depth interchange heuristic brings further improvements. Sections 4

and 5 describe a Lagrangian relakation of AP3 and a modified subgradient

optimization algorithm for solving the relaxation. The relaxation

incorporates one class of facet inequalities described in [31. Section 6

describes a greedy-plus-interchange heuristic for generating lower bounds. In

Section 7 we describe the branching strategy, i.e. the rules for generating the

subproblems to be solved at each node of the enumeration tree, and for

backtracking. Finally, Section 8 presents the results of computational

experiments with an implementation of the algorithm. Our program is shown to

compete effectively with the algorithm of Hansen and Kaufman, the only other

procedure for which more than anecdotal experience is available.

2 OUTLINE OF THE ALGORITHM

The algorithm begins with the original problem on the list of unsolved

subprcblems. It proceeds to apply two primal heuristics and subgradient

optimization on the Lagrangian dual. If it is unable to prove that the

heuristic solution is optimal, the algorithm replaces the original problem



with two subproblems, each of which has fixed to zero one of two mutually

exclusive, jointly exhaustive subsets of the variables in the support of a

pair of rows of the constraint matrix. One of these is selected to be che

next problem examined and the process is repeated (sometimes using a dual

heuristic instead of subgradient optimization). If a subproblem can be shown

to have no solution better than the best primal feasible solution found so

far, that problem is discarded. All unsolved problems are then examined; if

any can be discarded, they are deleted, and a "most promising" subproblem is

selected to be examined next. When all outstanding subproblems have been

deleted from the list, the current best solution is optimal.

The branching strategy is designed so that when enough blocks of

variables are fixed, the remaining subproblem is a (two-dimensional)

assignment problem, and can be solved to optimality in O(n3 ) time. These

subproblems are the terminal nodes of the enumeration tree.

An outline of the algorithm in mock Pascal form follows. Text in braces

(...} is commentary. Text in italics summarizes steps that are elaborated

later or do not require further elaboration. The value of the best known

primal solution is zu . The best known lower bound at the current node is

z C

Algorithm AP3;

begin

initialize;

while unsolved nodes remain do (main loop}

if current node not terminal then begin

apply primal heuristics;

update zu and current solution;

if z t > z -1 then

U
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backtrack

else begin

apply subgradient or dual heuristics;

update z 1 ;

if z >z - 1 then

backtrack

else

create subproblems and branch

end

end

else begin (current node is terminall

solve the terminal subproblem;

update zu ar-. current solution;

backtrack

end

end.

The algorithm as implemented is designed to solve problems with

nonnegative integer costs. Some features of the algorithm rely on this

assumption, particularly in the dual procedures. We will point out these

dependencies as they arise. Note that any problem with integer costs can be

"reduced" to a problem with nonnegative integer costs by adding a positive

amount to each cost in the support of any row. This transformation does rot

affect the optimal solution. Initialization of the lower bound to zero is

valid only for nonnegative costs. The bounding test z > z - I's

dependent on the assumption of integer costs.
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3 PRIMAL HEURISTICS

3.1 Constructing a Solution

Several primal heuristics were considered and tested for use in the

primal phase of the algorithm. In this section we describe the heuristics and

the results of computational tests.

We tested four heuristics. The first, DIAGONAL, is to simply set

xii i  1 1 for i = 1,...,n, and set all other xijk = 0. This is analogous to

the Northwest Corner rule for starting the Transportation Simplex Algorithm

(see, e.g., [10]), and for randomly generated problems (such as those tested

here) is equivalent to randomly selecting a solution.

The second rule tested was the GREEDY heuristic: The variable with

smallest cost is selected, the three rows thus covered (and the variables in

their respective supports) are deleted, and the process is repeated.

The third rule, REDUCED-COST, performs reductions on the costs,

subtracting the largest cost in each row (i.e. the largest of the costs of

variables in the support of each row) from all costs in that row. Then the

element with the most negative reduced cost is selected, and the process is

repeated. This rule is analogous to Russell's approximation method for

starting the Transportation Simplex Algorithm (see, e.g., [10]).

Finally, we have the MAX-REGRET heuristic: The difference between the

two smallest costs associated with variables in the support of each row is

calculated (the regret for that row, so called because it represents the

minimum penalty for not choosing the smallest cost in the row). The element

with smallest cost in the row with largest regret is selected, and the process

is repeated. This method is analogous to Vogel's approximation for starting

the Transportation Simplex Algorithm (see, e.g., [10]).
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The heuristics were tested on sets of randomly generated problems, twenty

problems to a set, for n = 4, 6,...,20. Costs were generated from a uniform

distribution of integers, 0 < cij k 5 100. The results are summarized in

Table 1. The results demonstrate that the MAX-REGRET heuristic dominates

the others, in terms of average solution quality (the columns labeled Mean in

Table 1) and frequency with which it produced the best solution (the columns

labeled Wins). In terms of computation time, the three "smart" rules were

each implemented as 0(n4) procedures. The REDUCED-COST rule took

approximately 3.5 times longer than GREEDY, and the MAX-REGRET rule took

approximately 8.75 times longer than GREEDY (DIAGONAL took an

insignificant amount of time in all cases). The average time for MAX-

REGRET with n = 4 was 10 milliseconds; with n = 20, MAX-REGRET averaged 3

seconds (implemented in VAX C on a DEC VAX 11/780 under VAX/VMS). GREEDY

and MAX-REGRET can be implemented in 0(n3log n) time by sorting the

variables by cost beforehand, but the constant factor associated with sorting

is comparatively high. We tested a sorted-cost version of MAX-REGRET using

QUICKSORT, and this version finally overtook its 0(n 4 ) counterpart at

around n = 19. Our algorithm does incorporate a sorting phase. The cost of

sorting is not a problem in our case, first because the heuristic is to be

DIAGONAL GREEDY RED-COST MAX-REGRET

n Wins Mean Wins Mean Wins Mean Wins Mean

4 0 210.65 7 80.45 10 69.40 12 68.80

6 0 276.50 2 90.05 6 75.00 14 55.15
8 0 391.75 4 92.15 3 90.75 13 58.45

10 0 504.20 3 78.50 3 81.10 14 60.15

12 0 646.45 3 90.85 4 83.00 13 51.95

14 0 663.25 4 89.20 2 83.55 14 50.05

16 0 795.15 2 85.30 1 73.95 17 42.00

18 0 892.60 3 79.00 2 76.10 15 45.35

20 0 1036.45 1 77.00 4 68.70 15 39.25

Table 1: Results of Comparative Tests of Primal Heuristics
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applied several times to the same problem, so the sort need only' be done once

(each iteration of each heuristic is quite fast on sorted data); and second,

because the heuristics are a relatively inexpensive part of the algorithm.

The heuristics can be applied in a straightforward way to the subproblems in

the enumeration tree, although it is possible that they will fail to find a

feasible solution. To minimize this possibility MAX-REGRET was modified so

that if only one element is left in a row at any time, that element is always

selected. If the heuristic still fails to find a solution, the step is

abandoned, and the value c; the heuristic solution set to infinity.

3.2. Local Improvement

It is possible to apply local interchange heuristics to a feasible

solution, which may succeed in finding a "nearby" solution with a better

objective function value. For any pair of elements in a solution, xioJoko and

Xiljlkl there are three possible pairwise interchanges, replacing these two

elements with elements with interchanged i-, j- or k-indices. If the sum of

the costs of the two new elements is lower that the sum of the costs of the

two original elements, then the exchange is carried out (if more than one

interchange yields an improvement, the one that gives the maximum improvemen,.

is applied). The process can be applied repeatedly until no interchange takes

place. This procedure may be applied after every successful application of

the heuristic, after solving the assignment problem at each terminal node, and

any time a primal-feasible solution is generated in the subgradient

optimization procedure.

There are three extensions to the pairwise interchange heuristic that

deserve mention. First, triple interchanges, etc., can be defined analogously to

pairwise interchanges, though the computational burden becomes exponentially
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heavier. Second, there is the concept of simulated annealing investigated by

Burkard and Rendl [4] for the Quadratic Assignment Problem, and by Skiscim and

Golden [161 and others for the Traveling Salesman Problem.

The algorithm we have implemented includes a third type of interchange

heuristic, based on the Lin-Kernighan heuristic for the traveling salesman

problem [12]. In the context of AP3, this variable-depth interchange heuristic

works as follows: Start with a feasible solution, and set the total gain to G

0 0. Select arbitrarily a variable that has the value 1 in the solution, say

Xiojoko. For each of the remaining variables xij k = 1, evaluate the possible

interchanges of Xiojoko , namely those formed by setting xiojoko : ijk = 0 and

either xiojoko X = x = iJok = 1, or xijk Xijk 1.

Select the variableXiljlkl that maximizes the gain, defined as giojO,ko),

(i,j,k)) = ciojoko - min[cijook, ciojko, cijoko}. If the sum of the gain and

total gain is positive, evaluate the cost of the solution with the interchange

performed. If the new solution is an improvement over the current solution,

then record the new one and continue. Set xioJoko = 0 and the variable for

which the gain is maximized to 1 (suppose this variable is xi joko). Set G to

the sum of G and the gain. Repeat the process, setting xiljlkl = 0 and

considering interchanges between the other variable in the interchange

(xioJjkj , for example) and variables that have not been selected before.

Continue as long as the sum of the gains is positive. If no improved solution

is found starting with xiojoko , then try sequences starting with each of the

other variables in the solution in turn. Repeat the entire process as long as

improvements are found.
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3.3 Computational Tests with Primal Heuristics

Table 2 shows the results of the initial application of the primal

heuristics on the problems solved to optimality. The optimal solution (z*)

and the results of applying GREEDY (zg), MAX-REGRET (z h ) and MAX-

REGRET followed by VARIABLE-DEPTH INTERCHANGE (z i ) are displayed.

The column labeled int. indicates the number of interchanges considered in all

sequences. For each value of n, the average of each value over five problems

solved to optimality is given (three problems for n = 26).

In our initial tests, the full algorithm spent roughly three times as

long in the VARIABLE-DEPTH INTERCHANGE phase as in the MAX-REGRET

phase.

S h i int.

4 42.2 53.6 52.6 43.2 3.2
6 40.2 90.2 76.0 45.4 10.6
8 23.8 81.4 59.6 33.6 14.4

10 19.0 84.4 50.8 40.8 17.4
12 15.6 87.0 40.2 24.0 22.0
14 10.0 86.4 64.0 22.4 39.2
16 10.0 78.2 58.8 25.0 55.0
18 6.4 62.4 21.8 17.6 15.2
20 4.8 77.4 75.8 27.4 80.2
22 4.0 93.4 47.8 18.8 52.8
24 1.8 91.0 59.1 14.0 71.0
26 1.3 107.3 36.0 15.7 42.0

Table 2: Primal Heuristic Performance on Problems Solved to Optimality

4. THE LAGRANGIAN DUAL

A valid lower bound for a minimization problem can be found by solving to

optimality a relaxation of the problem, with some of the constraints

deleted. In general integer programming, frequently the integrality

constraints are relaxed and the solution to the LP-relaxation is used as a

bound. For problems with special structure, a useful alternative is to relax
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some or all of the linear constraints by taking them into the objective

function with Lagrange multipliers. The multipliers can then be given values

such that the solution to the relaxation with the Lagrangian objective

function gives the same bound as the LP-relaxation. The advantage of this

Lagrangian relaxation, sometimes called Lagrangian dual, is that a good

approximation to this bound can often be computed with much less effort than

that involved in solving the LP. One technique for solving the Lagrangian

relaxation is subgradient optimization.

1.1 A Lagrangian Relaxation or AP3

We considered four "natural" relaxations of AP3:

1. All of the original problem constraints (except for integrality

constraints) are taken into the objective function. An optimal solution to

the relaxation (for fixed values of the multipliers) is obtained by setting

to one each variable for which the reduced cost is negative, and setting the

remaining variables to zero.

2. All constraints (except integrality) are taken into the objective

function and replaced by the single constraint that exactly n variables be

set to one. An optimal solution to this relaxation is obtained by simply

setting to one the n variables with smallest reduced cost, and setting all

others to zero.

3. The two sets of equations corresponding to the ground sets J and K are

taken into the objective function. An optimal solution to the relaxation is

constructed by setting to one, for every iEI, the variable in the support

of row i with the smallest reduced cost.

4. The set of equations corresponding to the ground set I is taken into the

objective function. An optimal solution to this relaxation is constructed

I~~~~~~~~ ...-- EN.---,.Ni Il n l
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by solving an assignment problem over the ground sets J and K, with the cost

for each (j,k)-pair given by the minimum reduced cost among all triplets

containing the pair (j,k) (i.e. the minimum is taken over iIl).

In all of the above relaxations the Lagrange multipliers are

unconstrained in sign, since they multiply equality constraints. As we

pointed out above, the exact optimum of the Lagrangian dual is equal to the

optimum for the LP relaxation in each case. In preliminary tests with the

subgradient optimization algorithm, all the relaxations converged at

comparable rates to a very close approximation of the LP optimum. Although

the overall complexity of each of these steps can be shown to be 0(n3 ) (except

for relaxation 2, which requires O(n3logn)), the constant factor is lowest for

relaxation 3. Nevertheless, we chose to incorporate relaxation 4 in the

algorithm for reasons we will explain below. Our Lagrangian dual is

Max L(u) (2)
U

where

L(u) = Min (cijk-Ui )xijk !

x iel j&J keK ij ici
subject to

I xij k  1 Vj C J
iCI kCK

I Xij k  1 Vk e K
icI jeJ

xijk {0,1} Vi,j,k

The costs for the assignment proc.e' over J and K are computed as

eik = mini l(Cijk-ui)

...... .. . -- =i.£I i m m nn n u nu nm
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4.2 Incorporating Facet Inequalities

The lower bound on the value of an integer program can often be

considerably strengthened by adding to the constriant set valid inequalities

that cut off solutions to the LP-relaxation. The strongest such inequalities

are the facets of the convex hull of integer solutions to the program.

Although for NP-hard problems such as AP3, the number of such facets may be

very large, they need not be added all at once; if the optimal LP solution is

known, it may be possible to detect a violated facet in a reasonable amount of

time. The violated facet can be added to the constraint set, and the LP re-

optimized. We have described several classes of facets for the three-index

assignment polytope [3]. In the algorithm presented here, we incorporate one

such class in the relaxation, namely the class of inequalities derived from

cliques of type 2, as defined in [3], of the intersection graph associated

with AP3. These cliques are defined as

Q2 (i*,j*,k*) =

t(i,j,k): i = i*, j = j* or i = i*, k = k* or j = J*, k = k*}.

The facet inequality is

I x 1.
sEQ2 (i;,J*,k*) 3

These constraints can also be taken into the objective function with Lagrange

multipliers, but since there are n3 of them, the computational burden of

computi g the reduced costs in an instance of the relaxation is heavy. Again,

only a subset of the inequalities is likely to be active (i.e. to have nonzero

dual multiplier value) at any point. We need to develop a method for

detecting the inequalities that are likely to be active and including them.

The Lagrangian function becomes:



I hf

ieI jeJ kEK icSl e• seT Q2(s)t

where o 0, and T c S is the subset of the variables that generate

active clique constraints.

Which constraints should be chosen? Solving the LP-relaxation of AP3

would give us a basic solution having at most 3n - 2 non-zero variables, and

if this solution were fractional, we could look for inequalities violated by

it. In the subgradient technique, we do not have a primal feasible LP

solution at hand, so we cannot identify violated inequalities directly.

Instead we consider the solution to the relaxation corresponding to the best

bound generated by the subgradient procedure. Such a solution satisfies

exactly the constraints corresponding to the ground sets J and K, but may

under- or over-cover constraints corresponding to ground set I. Any pair of

variables equal to one in the solution which, taken together, over-cover a

constraint in ground set I, also violate exactly two type-2 facet

inequalities. Suppose two such variables are xi0jok0 = xi0Jlkl 1 1. Then x

violates the facet inequalities corresponding to Q2(i0 ,j0 ,kl) and

Q2(i0 ,Jl,k0 ). These cuts are incorporated into the objective function, and

the subgradient procedure then continues as described below.

5. THE SUBGRADIENT OPTIMIZATION PROCEDURE

We use subgradient optimization to solve the Lagrangian dual problem,

which we restate as

Max L(w)

with

L(w) = min c(w)x + k(w).
xcF
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Here F is the set of feasible solutions to the constraint set of.(2), w is the

vector of dual variables, k(w) is a constant with respect to x for a given n,

and c(w) is the Langrangian objective coefficient vector of x. In the case of

our original relaxation of AP3, w = u. When facet inequalities are added,

= (u,P) and p 0 is required. We begin with no z 0 and iterate the

following steps (m is the iteration counter):

1. Solve minxcF c(im )x to determine L(,m) and a subgradient direction um .

2. Determine a direction sm based on um , and a step length tm.

3. Set wm+l = Im + tmsm, m = m + 1.

The procedure continues until some stopping criteria (described below) are

met. We have described in section 4.1 the procedure for solving the

relaxation. The remaining steps are discussed below. Finally we describe how

the procedure interacts wih the branching process.

5.1 Choosing a Direction

The subgradient for the original relaxation is U, where

= 1JJ lkcK x7Jk for is I and x* is the optimal solution to the

relaxation. When the relaxation includes facet inequalities, u = (uu °

where up max(O, L(ik)cQ2(q)xijk-1). This is one candidate for the

direction (i.e. sm = m). Another possibility, suggested by Camerini, Fratta

and Maffioli (51, is a modified subgradient that takes into account the recent

history of directions to reduce the tendency of the subgradient to "zig-zag".

alternating between two directions without making significant progress towarri

the dual optimum. The direction [51 is defined componentwise as

smp = Um + 0 sm -1 where um is the subgradient, and 8 is a scalar weight or
p p m p m

the direction from the previous iteration, defined as



16J M-1 11m i m-1 m 0,

m
0 otherwise.

The parameter a controls the angle between s and sm, and must be between

zero and two. The value suggested in [51 is 8 = 1.5, which we used here. The

idea behind the choice of sm is that sm is greater than zero when the actual

gradient direction pm and the direction in the preceding step sm-1 form an

obtuse angle, favoring the "persistent components" of the subgradient over its

"alternating components".

Our early experiments confirm that, for our problem, this smoothed

subgradient direction is indeed an improvement over the subgradient alone. At

some nodes of the enumeration tree, the dual procedure using the subgradient

direction was unable to improve the bound given by the penalty function

(described below), within a fixed number of iterations. The modified

direction was often able to find an improvement in these cases within the same

number of iterations.

5.2 Computing a Step Length

The step length is defined as

Zu - Z
t m

where zu is the current upper bound and zm is the value of the current

solution to the relaxation. In order to guarantee convergence (i.e. tm 0 as

m - -), the step length contains a multiplicative parameter 0 5 X 5 1 (see [5]

for justification) that shrinks over time. The rate at which X shrinks is an

important factor in determining the performance of the subgradient

optimization procedure. Too slow a rate may cause the procedure to run on
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without improving the bound. Too rapid a rate may cause termination of the

procedure before the optimum is achieved. We use the following rule: Start

with X = where

0.5 if 0.95 < z/z u
X 0 = 0.75 if 0.90 -< z /z u < 0.95

1.0 if z1/z u < 0.90

Halve A after some number of iterations since the last improvement in the

bound. The number of iterations is set to n at the start. After an

improvement of 1%, an additional n/2 iterations are allowed for additional

improvement. The idea behind this rule is that, if improvements are being

made in the bound, we want to continue to take longer steps and not force

early termination. After some time with no improvement, the step length

should be made smaller. Of course these rules are heuristic; although

important, the influence of rules controlling A is not well understood.

5.3 Stopping

The subgradient procedure is terminated if too many iterations occur

without an acceptable improvement. Specifically, we allow 2n iterations from

the start of the procedure to gain an improvement of at least 5%; subsequently

n/2 iterations are allowed after each 5% improvement. The procedure is also

terminated if a solution to the relaxation is found to be primal feasible or

(as a last resort) if the step length becomes too small (tm < 10"8). If a

primal feasible solution is detected, it is checked for optimality for the

subproblem, by testing complementary slackness conditions for the currently

active cuts. If the solution is optimal, the current node can be discarded.

In any case, the solution is improved with sequential interchanges and the

upper and lower bounds are updated.
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5.4 Generating Primal Feasible Solutions

Given a solution to the relaxation for some fixed w, a primal feasible

solution to AP3 can be generated in the same fashion as is done at a terminal

node in the enumeration tree. The variables set to one in the solution may be

taken to specify an assignment of the elements of J to the elements of K, J

and K being the two ground sets for which the constraints are satisfied. Once

this assignment has been specified, the optimal allocation of elements of I to

(J,k)-pairs is a (2-index) assignment problem.

After each call to the subgradient procedure, the relaxation solution

associated with the best lower bound is made feasible in this manner, and the

primal solution constructed is improved by applying to it VARIABLE-DEPTH

INTERCHANGE. If it is an improvement over the incumbent solution, the

incumbent is replaced.

5.5 Incorporating Facets

For the first application of the subgradient routine, all dual variables

are set to zero, and the direction vector is set to zero. Initially, no cuts

are active. After the first execution of the procedure, any type-2 clique

facets violated by the solution to the relaxation corresponding to the best

lower bound generated are added to the active list, with the associated

multiplier set to zero. The subgradient procedure is then applied again, with

the prior ending solution and direction used as the starting point.

After each subsequent execution of the subgradient procedure, the list of

active cuts is checked against the new solution to the relaxation. If any

cuts in the list are no longer active (i.e. have zero weight), they are dropped

from the list. If any of the dropped cuts were previously active (had
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positive weight), then the cut list is updated (i.e. any cuts violated by the

best-bouT solution are added to the list), and the subgradient procedure is

applied again. The strategy of not updating the active cut list unless a cut

is dropped represents a compromise between the computational effort involved

in upda .ng the active cut list (O(n2 x number of cuts in the list)), and

the desirability of keeping the list as up to date as possible. The

subgradient procedure is then repeated. If no formerly active cuts are

dropped, the algorithm continues.

The performance of the subgradient optimization procedure with and

without the cuts is illustrated in Table 3 on the problem set described

earlier (at the root node of the search tree). Here z* is the value of the

optimal solution, z0 and zc are the lower bounds obtained by the procedure

without cuts and with cuts, respectively, and the "% gap" is

((zc z )/(z*-zO)) x 100.

n z* z %gap # cuts

4 42.2 39.96 40.77 26.96 1.6
6 40.2 35.25 35.75 39.12 5.2
8 23.8 18.55 19.09 40.67 5.6

10 19.0 15.58 i6.43 43.01 8.4
12 15.6 13.63 13.78 52.19 15.2
14 10.0 6.67 7.20 41.98 17.6
16 10.0 6.50 6.67 36.21 15.6
18 6.4 3.59 3.78 35.46 15.2
20 4.8 1.49 1.88 28.37 25.6
22 4.0 1.45 1.70 30.32 22.0
24 1.8 0.15 0.23 17.47 22.4
26 1.3 0.11 0.19 9.60 51.3

Table 3: Performance of Subgradient Optimization
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6. DUAL HEURISTICS

Because the subgradient procedure is expensive, we chose to alternate it

with some dual heuristics, according to criteria described in Subsection 7.4

below. In this section we describe the greedy and interchange heuristics used

as alternatives to the subgradient procedure.

The dual of the LP relaxation of AP3 is

Max I u . + v +. wk
icI jeJ kEK

subject to

u.I + v + wk S cij k i e I, j e J, k e K

The first phase of the procedure is a simple greedy heuristic. Let

cijk cijk - ui - vj - wk .  Then as long as there are free variables, find

the triplet (i,j,k) for which c is minimized and allocate to each free

variable in the (dual) row an equal fraction of c ijk  This procedure is

applied at the root of the enumeration tree, and at the interior nodes of the

tree as described below.

The solution constructed by the greedy heuristic is improved using a

procedure similar to that proposed by Fisher and Kedia [6] for set

partitioning, but modified to take advantage of the special structure of

AP3. For each dual variable ui., i* c I, the variables associated with the

other ground sets (J and K) are scanned to locate a maximal set of variables

v and wk with the property that (i) none of the selected variables appear

together in a tight constraint; and (ii) none of the selected variables appear

in a tight constraint together with any ui, i * i*. The dual solution can

then be modified by decreasing the value of ui, and increasing the values of

each of the selected variables vj and wk by equal amounts until some new

constraint becomes tight. If the number of variables to be increased is m and

the amount of increase is 6 then the value of the dual solution is increased

by (m - 1)6.
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7. BRANCHING AND SUBPROBLEMS

In this section we describe the rules for branching (defining the

constraints imposed and the subproblems generated when a branch is taken). We

also discuss the criteria for choosing a particular branch at a given node,

and the backtracking strategy.

7.1. Subproblem Definition

The number of feasible solutions to an order-n axial AP3 problem is

easily seen to be (n!)2 . The common branching strategies for general integer

programs, and all the branching strategies used in the published algorithms

for AP3, are designed so that a terminal node in the enumeration tree

represents a complete solution to the original problem. The number of

terminal nodes in the complete tree is thus (n!)2 . In addition, branching

rules that specify setting a single variable to one typically require that

several subproblems be generated from the current subproblem when branching

takes place. The branching rules described in (141 and [11] produce (n-i+1) 2

subproblems at level i in the tree, each of which is an AP3 problem of order

n - i. The maximum depth of such a tree is n - I. The binary branching

scheme, in which a single variable is set to one in one subproblem and zero in

the other, produces a tree in which the depth ranges from n on a path where

all subproblems arise from setting variables to one, to n3 - n on a path where

they arise from setting variables to zero.

For general 0-1 programming, branching on multiple choice constraints of the

form 1JEQXJ Z I for a subset Q of the variables, is often done by splitting

the set Q in half and fixing the variables in each half to zero in the

respective branch. In the case of AP3, this strategy leads to an enumeration
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tree of depth O(n log n) with the same (n!)2 terminal nodes. The rule is

attractive because it keeps the tree depth relatively small by locking several

variables in each branch, but it does not exploit problem structure in any

way.

The rule chosen for this algorithm also fixes several variables in each

branch, but does not split the support of a row evenly. Instead it exploits

problem structure in a way that complements the Lagrangian relaxation used in

the dual procedures and reduces the number of terminal nodes in the tree. The

depth of a path in the tree ranges from n - I to n2 - n depending on whether

each branch fixes the larger or smaller block of variables.

Let Mr denote the support of row r E R = I u J u K. Consider the

ground sets J and K. Any pair of indices J E J and k0 E K specifies a

block of n variables, M(Jo,k0) : {xi jk: i e I}. In fact the row

corresponding to Jo consists of n such sets, one for each possible kO . Let P

be a permutation of (1,...,n} and let [jip denote the element in position j of

P. If the variables in M(J,k):= (M u Mk ) \ M(J,k) are fixed to zero for j

= 1,...,n, k = [J]p, the problem that remains when the columns corresponding

to these variables are deleted is a (2-index) assignment problem, in which the

elements of I are to be matched to (j,k)-pairs. There are n! possible

assignment problems (corresponding to tne n! permutations of J), so our search

tree, when complete, has n! rather tin n' )2 leaves. Each of these problems

can be quickly solved to optimality.

Our branching rule is to choose 3 ,,k)-pair, and set the variables in

M(j,k) to zero in one branch (the weak side branch), and those in M(J,k) to

zero in the other (the strong side branch). For any JO, ko, when the weak side

constraints corresponding to M(Jo,k) have been imposed for all k * ko, tie

strong side constraint corresponding to M(Jo,ko) is imposed immediately,
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since imposing the weak side constraint for M(Jo,ko) would render the

subproblem infeasible. When ri strong side constraints have been imposed, a

terminal node is reached, and the corresponding (2-index) assignment problem

is solved by the shortest augmenting path method. (In our tests, no terminal

nodes were ever generated for any of the problems solved to optimality.)

7.2 Branch Selection

How should the next index pair for branching be selected? We use a two

level selection process. At the first level, we prefer to select from the set

of index pairs with the property that in both subproblems the lower bound can

be increased over that of the parent. The technique for finding this set, and

a penalty that can be calculated. for each subproblem is described beluw.

Within this set, or if this set is empty, or if the penalty calculation cannot

be performed, we select the index pair identifying the block for which the

minimum cost of a free variable in the block is maximum. Note that variables

can b. fixed to zero before branching at each node if their reduced costs

exceed the gap between the upper bound and the lower bound of the current

node. In case of ties, the block with the largest number of free variables is

chosen. The two subproblems corresponding to the selected (J,k)-index pair

are created and the weak side problem is selected next. This "depth-first"

strategy is pursued until a node on the path is discarded. Then a new problem

is selected from the list of unsolved problems, in a manner described below.

A child node that can be discarded based on a penalty is simply not created.

7.3 Backtracking and Subproblem Selection

If the current node is discarded or the weak subproblem is not created,

either because the branch is infeasible or because it is discarded based on
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penalties, then a new subproblem must be selected from the remaining unsolved

problems. Our algorithm uses a flexible backtracking strategy, in which the list

of subproblems is scanned for the "most promising" subproblem, which is

selected next. As a measure of promise for a subproblem, instead of simply

using the lower bound, we use an adaptation of the best projection rule

described by Forrest, Hirst and Tomlin [7] for general integer programming.

The measure of promise is a projection from the lower bound of the current

subproblem to the lower bound at a terminal subproblem, defined as:

zp = zz + d(z u-Z)/d0  (3)

where zu is the current upper bound, z0 and z are the lower bounds at the

root of the search tree and at the current node, respectively, do is a measure

of the distance from the root of the search tree to a terminal node, and d is

the same measure for the current node. To measure the distance to a terminal

node, we use the number of weak side branching constraints needed in order to

transform the current subproblem into a completely specified assignment

problem. For the original problem (at the root of the enumeration tree) this

number is do = n2 - n. In general, the number is d = n2 - n - w, where w is

the number of weak side constraints required to form the current subproblem

from the originai problem. (Each arc on the path from the root to the current

node signifies the imposition of a strong or weak side constraint. Each

strong side constraint may be thought of as imposing 2(n-1) weak side

constraints, some of which may duplicate constraints imposed at earlier levels

in the tree. These duplications are not counted in the distance calculation.)

The backtracking routine thus scans the entire list of unsolved

subproblems. If any node can be discarded (because the upper bound has been

updated since the subproblem was created), that subproblem is deleted from the

list. If the subproblem is still active, the projection of its lower bound is
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computed, and the problem with the best projection is made the new current

subproblem.

7.4 Applying Subgradient and Dual Heuristics at Subproblems

The bounds produced by the subgradient procedure are significantly more

accurate than the greedy bounds, but the improvement comes at a substantial

cost in terms of computational effort. As a compromise, we apply the

following strategy: At the first node in the branch and bound tree, both the

greedy-plus-interchange and subgradient procedures are applied, and the best

bound is used as the lower bound. At subsequent nodes either the dual greedy

or the subgradient procedure is applied, depending on the node's position in

the tree:

• If the node was generated in a strong side branch, then the subgradient

procedure is applied, using the solution of the nearest ancestor at which

the subgradient procedure was previously applied as the starting solution.

The same rule is applied after 2n - 1 weak side branches, since 2n - 1 weak

side branches fix the same number of variables as a single strong side

branch.

" At other nodes, the greedy-plus-interchange heuristic is applied, based r

the original costs. (We also tried using the reduced costs including tne

cuts and associated weights from the nearest ancestor at which tnp

subgradient procedure was applied, but this did not seem to improve t'.re

overall performance of the algorithm.)

When branching, the best dual solution found for an ancestor of ".e

current subproblem is adopted as the starting solution to the subgradie'"

optimization procedure for the subproblem, and the initial direction vector s

set to the last smoothed subgradient of the ancestor.
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In order to improve the lower bound on a child problem, and to determine

if the subgradient optimization procedure might lead to an improved bound for

the child, a penalty function is computed when the branch index is selected.

The penalty is defined as the difference between the lower bound of the parent

node and the solution to the Lagrangian relaxation of the child problem using

the initial dual variable values. The penalty is clearly zero if none of the

variables in the best relaxation solution to the parent problem are excluded

in the child as a result of variable-fixing in the branching phase. In this

case, if the subgradient procedure has indeed converged at the parent node

then it is unlikely that any improvement can be obtained by continuing the

procedure on the child. Thus the dual procedure is not applied to the child

if the penalty is zero. If any variable set to one in the parent's relaxation

solution is fixed to zero by the branching procedure, then the penalty is

calculated as described above and the child's lower bound is set to the sum of

the parent's lower bound and the penalty. If the child cannot be discarded on

the basis of the penalty, it is placed on the unsolved problem list and the

algorithm continues. We note that the penalty calculation only takes into

account the variables fixed in M(j,k) or M(J,k), and not variables that may

be fixed by implication. It is thus possible that a variable actually is

excluded in the child problem but not considered in the penalty calculation.

8 COMMATIONAL EXPERIENCE

8.1 The Algorithm as a Whole

We have implemented the algorithm on a DEC VAX 8650 in VAX C (under

VAX/VMS). A set of random test problems was generated with the following

characteristics: five problems for each even value of n ranging from 4 to 24
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were generated with integer costs from a uniform distribution between 0 and

100. in addition, three with n = 26 with the same range of costs were solved

(the remaining two problems in this set could not be solved in 30 minutes of

CPU time each). The results of the tests are summarized in Table 4. The

column Secs displays the total CPU seconds required to solve each problem.

Nodes is the total number of nodes visited (i.e. subproblems solved by the

heuristic), and SGD is the totdi number of subproblems to which the

subgradient procedure was applied. Iter is the total number of subgradient

iterations. Depth is the maximum depth of the branch and bound tree. The

columns % primal, % sgd and % dual represent the percentages of CPU time spent

in the primal heuristics, subgradient optimization and dual heuristics,

respectively. Most of the time in the subgradient procedure is spent forming

and solving the relaxations. In the primal heuristics, most of the time is

spent in the sequential interchange procedure. Each line in the table

represents the averages over the five problems in each set (three problems for

n 26).

n n3  Secs % primal % sgd % dual Nodes SOD Iter Depth

4 64 0.03 12.86 48.58 5.72 2.4 1.60 9.00 1.60
6 216 0.16 12.66 54.80 9.52 8.2 4.20 38.80 5.00
8 512 0.84 8.20 74.90 7.44 18.6 9.20 111.20 6.20

10 1000 1.36 9.02 68.74 9.46 21.6 8.80 124.60 10.40
12 1728 2.19 6.32 72.80 8.08 22.6 10.60 123.40 12.40
14 2744 11.95 7.78 65.80 15.32 108.8 50.60 687.40 24.40
16 4096 39.90 8.34 63.12 20.92 270.6 98.20 1665.80 38.60
18 5832 55.30 7.04 66.56 19.80 277.4 85.60 1830.80 34.00
20 8000 169.29 5.32 67.80 20.20 625.2 223.40 4412.20 49.40
22 10648 371.52 4.98 68.66 21.18 1053.8 284.80 8432.00 73.40
24 13824 514.52 4.46 70.12 20.54 1177.8 466.00 10512.80 70.40
26 17576 624.00 4.27 63.87 28.00 1290.0 381.67 11456.33 98.00

Table 4: Computational Results

These results may be compared with the results of Hansen and Kaufman [9],

reproduced in Table 5. It is difficult to compare actual computation times on

their CDC 6400 and our VAX 8650, and we do not have access to the problems
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they solved, although our problems are generated from the same distribution.

They report times that increase by a factor of about six for each increase of

n by two (over the range n = 4.... ,12). Over the range n = 4 .... 24, our

algorithm shows an increase by a factor of about three.1 Also, the number of

nodes evaluated approximately doubles for each increase of n by two.

n # problems CPUSecS

4 5 0.59

6 5 2.75

8 5 10.59

10 5 60.27

12 5 359.77

16 1 674.69

Table 5: Computational Results from Hansen and Kaufman

There are some other observations that we can make regarding the

performance of our algorithm. In particular, as the number of variables

(q = n3 ) increases, the ratio of the number of nodes of the search tree

visited to the number of variables increases slowly from about 4% to about 10%

over the range n = 4,...,24. Also, there are no instances in which the

algorithm was required to solve a terminal assignment problem. This indicates

that the bounding procedure is reasonably effective, and that the heuristics

are finding the optimal solution, although not necessarily at the first

application.

There is an observation that we made during the course of our preliminary

experiments that is not reflected in the results shown here, but that

1 Since only one example of a problem larger than n = 12 is provided in [9],

it is impossible to gauge the performance of that algorithm on larger
problems.
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influenced design decisions during the development of the algorithm. That

observation is that the primal and dual procedures that gave the best bounds

at the root of the enumeration tree did not necessarily perform the best down

in the subtrees. In particular, using these procedures often resulted in

enumeration trees with more nodes than the procedures we finally selected,

even though they gave better bounds at the start. Since the procedures that

gave better bounds often required substantially more running time per

application as well, the savings from not using them is increased still more.

The most expensive component of the algorithm is the relaxation solver in

the subgradient procedure. As we pointed out in Section 5, the factors

relating to the "optimal" number of subgradient iterations are not well

understood. In addition, the behavior of the method when used in a branch and

bound context, where it is started with a near-optimal solution to each

subproblem, has not been extensively investigated. As in most studies to

date, we have used ad hoc rules to determine the number of subgradient

iterations. This is an issue which merits further careful experimental

research, in the context of other classes of problems. Finally, some of the

new aspects of this algorithm (especially the way facets are handled in the

Langrangian dual procedure) can be employed in algorithms for other problems.

8.2 The Priml Heuristic as a Stand-Alone

We applied the MAX-REGRET and VARIABLE-DEPTH INTERCHANGE

heuristics to a collection of larger problems, ranging from n = 20 to n = 70

(up to 210 equations and 343,000 variables). In view of the larger number of

variables, these test problems were generated with costs ranging from 0-

1000. Table 6 shows the results of these tests (averages over five problems

for each value of n). The column labeled zg is the result of the GREEDY
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heuristic. The result of the MAX-REGRET heuristic is in the column labeled

zh. The VARIABLE-DEPTH INTERCHANGE procedure was applied to the

solution produced by MAX-REGRET, and the results are given in the z i

column. The number of interchanges is reported in the int. column. The times

reported (sec.) are CPU seconds for MAX-REGRET and V.-D. INTERCHANGE

together, this time on a VAX 8600 running VMS. For problems of this size, the

configuration of system memory has a significant impact on performance, i.e.,

paging gets to be expensive, especially on a system not carefully tuned for

memory-intensive applications. The lower bounds (z.) are the result of

applying the subgradient procedure described below.

Our conclusion that MAX-REGRET is superior to GREEDY continues to be

supported. Overall, MAX-REGRET gives values about 1/2 those of GREEDY.

VARIABLE-DEPTH INTERCHANGE brings the solutions down again by a factor

of roughly two. Over the 55 problems in the sample, GREEDY found a better

solution than MAX-REGRET only seven times. In only ten problems was

VARIABLE-DEPTH INTERCHANGE unable to improve on the solution found by

MAX-REGRET. In these problems, the average number of interchanges was

24.4.

n n3  zg  zh  zi z, int. sec.

20 8000 823.0 569.6 266.2 98.94 75.6 0.16
25 15625 871.8 438.4 205.4 75.30 50.6 0.38
30 27000 918.4 416.2 166.0 63.98 99.6 0.82
35 42875 846.0 437.0 195.0 44.80 86.6 1.44
40 64000 1148.0 618.0 175.2 40.60 111.4 2.45
45 91125 988.0 420.2 186.8 34.00 105.6 4.18
50 125000 910.6 369.0 229.0 24.38 156.6 5.88
55 166375 854.0 356.8 183.2 15.18 187.4 9.16
60 216000 1107.0 403.4 137.4 10.08 108.6 12.69
65 274625 1064.8 354.8 132.0 5.90 87.6 26.57
70 343000 865.8 477.2 167.6 3.88 301.0 64.91

Table 6: Primal heuristic performance on large problems
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We conclude that the combined MAX-REGRET plus VARIABLE-DEPTH

INTERCHANGE heuristic is by itself a powerful practical approximation

method for efficiently solving very large problems.
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